"THE MOST ECONOMIC COMBINATION OUT OF PHOTOVOLTAIC (PVPS) WIND (WES) BATTERY STORAGE (BS) SYSTEMS AND APPLICATION FOR EGYPTIAN SITES

تكوين العجموعة الأكثر اقتصادية من منظومات الخلايا الكهروشوئيية (الفوتوفولنيه) / الرياح / سطارية تخزين ونطبيق على مواقـــع مصـــريميــة

H.H. El-Tamaly
Lecturer, IEEE M
Faculty of Engineering,
Elminia University
Elminia, EGYPT.

M.H. El-Maghraby Professor, IEEE SM Faculty of Engineering El-Mansoura University El-Mansoura, EGYPT

خلاصة _ بقدم هذا البحث طريقة مقترفة لابداد أفضل المحمودات الاقتصادية والتي بمكن تكوينها مسيسان منظومة الطافة الكهروصوئية (العوتوبولتية) ومنظومة طاقة الرباح ووحدات من بطارية تحريل ليقديه الحملاليومي المطلوب بحث تأثير فيود فية واقتصادية ، وقد نم استخدام بيانات فعلية ودفيقة للاشعاع المصمي ولبرعة الرباح نم نسجيلها لعطبا على مدى الاقوام السابقة _ ودلك لابداد التعميم الاشتسسل للمنظومات المذكورة ، وتم اجرا طبيق كامل للطريقة المقترفة بسرمجتها وتشخيلها على الداسسية الرفعي الشخصي واستباط وبطيل شكل المنتبات الداسة بالاقدال البومية المطلوب فذبتها وكذليبيك الداسسة بغرج المنظومة العوتوثولتية ومنظومة الرباح والمقسري انشاؤ ها في موقعي مرمي مطروم وشبرق العويثات بمحمورية مص العربية وتم المائية المنظومة النياقات عمل المنظومات الطاقة الكوروصوئيسية ودلك بتطبيق ما القدريداة وأطلقنا عليه هنا بادارة الأحمال بصباعده منظومات الطاقة الكوروصوئيسية وطاقة الرباح _ كما تم ابحاد ونطليل التأثيرات الساتحة عن أخذ نب مختلفة لبخلل منظومات الطاقية ووجد المتحددة هنا على حجمها ، ولقد تم ابجاد بعر الكيلوات ، داعة المنتج من المنظومات السابقة ووجد مربي مطروح وشرق العوينات على الترتبب _ كما تم تحديد الوحدة المثلي ونصبة نظل كل منظومة لكيبل موقعين البابقين ،

ABSTRACT- This paper presents an approach by the aid of which combinations of photovoltaic (PVPS), wind (WES) and battery storage (BS) systems are investigated in supplying a daily load demand subject to a set of technical and economical constraints. On solving the design problem, accurate and short-term solar radiation and wind speed data are used. Seasonal variations in demand and climate as well as distinctive penetration levels of the renewable energy system effect appreciably the design parameters.

The proposed approach has been extensively applied and programed to be run on a personal computer. The demand and generation output profiles are deduced and analysed for distinctive penetration levels of both PVPS and WES hypothetically installed at Mersa-Matruh and East-Oweinat in EGYPT. The BS is eliminated or reduced having a minimum capacity by applying what we call and propose, here, as PVPS and WES-aided load management.

These systems result in competitive energy cost figure of \$ 0.0136 (0.0299 L.E) and \$ 0.0116 (0.0255 L.E) /kWh for Mersa-Matruh and East-Oweinat as egyptian sites respectively. The most economic energy combination is thus deduced with the respective optime penetration levels of their systems.

INTRODUCTION

A rapidly growing global population with higher expectations will require increases in the consumption of lossil fuels in the years to come. However, τ

global deposits of fossil fuels are already being depleted at an alarming rate. The extreme shortages in conventional energy supplies and the indiscriminate exploitation of natural resources have resulted in large scale deforestation and famine in many parts of the world. Lack of facilities and employment opportunities in the rural areas have led to mass migration and overcrowded mega-slums around cities, resulting in further detrimental effects on the social and economic progress, and the environment in developing countries [1].

Remote rural areas, like which located in EGYPT, typically do't have and are't expected to have electric grid supply in the near future.

It appears that harnessing locally available renewable resources to supply the energy needs of remote rural areas is an option that deserves the serious consideration of energy planners, especially in countries that do't have adequate fossil fuel resources.

This paper presents an approach by the aid of which combinations of PVPS, WES and BS systems are examined and operated for meeting a daily load demand throughout the year.

Three alternatives are practically possible and investigated. The first one is to feed that load by a combination of PVPS/WES/BS. The second alternative is to use a combination of PVPS/BS systems aiming at supplying the same daily total load demand while the third one is to integrate the WES with BS systems.

The most economic combination has been governed by several factors like the solar cells array, wind turbine generators and battery costs and their technical characteristics. Thus, a comparative study with complete analysis has been carried out to find the most economic combination for the egyptian sites under study. The introduced approach has the advantage of its ability to deal generally with any site and load requirements.

GLOSSARY OF NOTATIONS

```
S_n
         = The n th site, n = 1,2,3,...
          = Time, hours
L (t)
         = Hourly Load Demand, MW
            Daily Energy Demand, MWh
Peak of Daily Load Demand, MW
LE
L_{\mathbf{p}}
            Peak Load Starting Instant, hour o'clock.
            Load Factor, p.u.
         = Solar cells size, m2
SC
            Solar cells Array
SCA
         =
            Solar cell size, m2
5°
            Initial value of solar cells size, m2
            Hourly output of PVP5, k W
p (t)
PVPS
            Photovoltaic Power system
PΕ
            Daily output Energy of PVPS, kWh
            Penetration Level of PVPS output, p.u. Solar Ceil Thermal Resistance, m<sup>2</sup>. C° / kW
TLy
q
ľтн
            Hourly Solar Radiation Received by horizontal surfaces, kW/m2.
              Hourly Solar Radiation Received by surfaces tilted by the Monthly Best Tilt
[ Tt
             Angle at the site under study, kW/m^2 [2,3]
            Ambient Temperature, °C
            Hourly ceil Temperature, "C
            Theoretical Solar Cells Efficiency, P.U.
            Fractional Decrease of Cell Efficiency, P.U.
            Theoretical Operating Temperature of the Solar Cell, °C.
            Hourly Efficiency of the Solar Cell, P.U.
            Factor of safety includes an Allowance for the possible Inaccuracy of solar Radiation Data for the Maximum Possible Variation from the Average Weather
            Conditions and for the probable loss in the Array Output due to its obscaration
            by Dust, P.u.
```

```
۷Ė
          = Variability Factor Takes into Account the Influence of the variation in the solar
             Radiation from Year to Year, p.u.
PC
            Power conditioner
          = Power conditioner Elficiency, p.u.

    Wind Turbine Generator

WES
          = Wind Energy System
          = Number of WTG units
NΨ
          = Initial Number of WTG units
\mathbf{w}_{(t)}^{\mathbf{w}}
          = Hourly Output of WES, kW
ΨE
          = Daily Output Energy of WES, kWh
٧t
          = Hourly Wind speed, m/s
Vr
          = Rated Wind speed, m/s
v_{ci}
          = Cut-in Wind speed, m/s
V<sub>CO</sub>
A
CP
          = cut-out Wind speed, m/s
          = Swept Area of the wind Turbine Rotor, m2
          = The ratio of Power Absorbed by the Wind Turbine Rotor to the Power Inherent
            in the Wind-
TLW
          = Penetration level of WTG Output, p.u.
ያ
T

    The density of air, kg/m²

          = Air Temperature, °K
P<sub>r</sub>
VP
          = Air Pressure, mm of Hg
= Pressure of water vapor, mm of Hg
Mechanical Transmission Efficiency, p.u.
          = Electrical Generator Efficiency, p.u.
          = Battery storage Capacity, kWh
          = Solar cells Price, $ / Wp
          ■ BS Price, $ /kWh
Св
          = Energy cost Figure, $ / kWh
```

2 PROPOSED APPROACH

2.1 Main Intention.

The principal aim of this work is to determine the most economic energy combination out of three appropriate alternatives. The Photovoltaic (PVPS) and Wind energy systems (WES) integrated with a battery as a storage constitute them. Since the first two renewable systems are site-dependable, thereby, the proper combination will differ according to the sites under consideration. Economic grading of the studied combinations to be installed for each site is possible out of the attainable numerous results.

2.2 Factors Affecting Solution.

Since the final conclusions are governed by many technical and economical factors and constraints, an approach should be proposed to deal with them in tackling the probem. Of these factors, the type of solar radiation and wind speed data (hourly, average monthly or yearly), possibility of applying storage during the deficit periods, the problem of how to meet the load at low insolation, cloudy and night periods with respect to PVPS in one side and the periods of meeting the demand during which the wind speed may be less or more than the cut-in and cut-out speeds respectively in the other, role of battery storage toward these obstacles, prices of system components particularly those of the solar cells array and battery at the present and future times and eventually the hopeful accuracy in solving the problem.

2.3 Energy Combinations.

Fig. I displays the subsystems constituting the investigated combinations with their specifications presented in the Appendix.

2.4 The Proposal.

2.4.1 Assumptions and Flow Chart.

In a previously published paper [4], the authors had recommended the use of a full

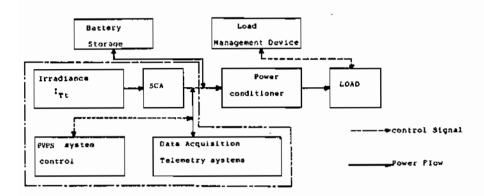


Fig.1 - a Scheme Diagram of PVP5/85 Energy combination .

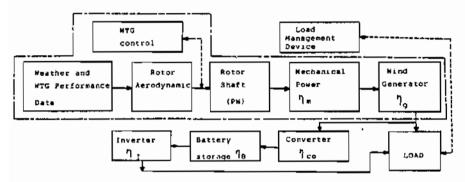


Fig.1 - b Scheme Diagram of WES/85 Energy combination.

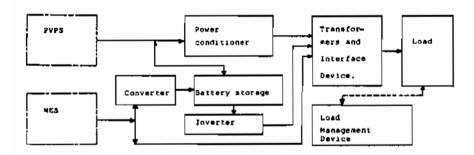


Fig. 1 -C Scheme Diagram of PVP5 / WES / BS Energy Combination.

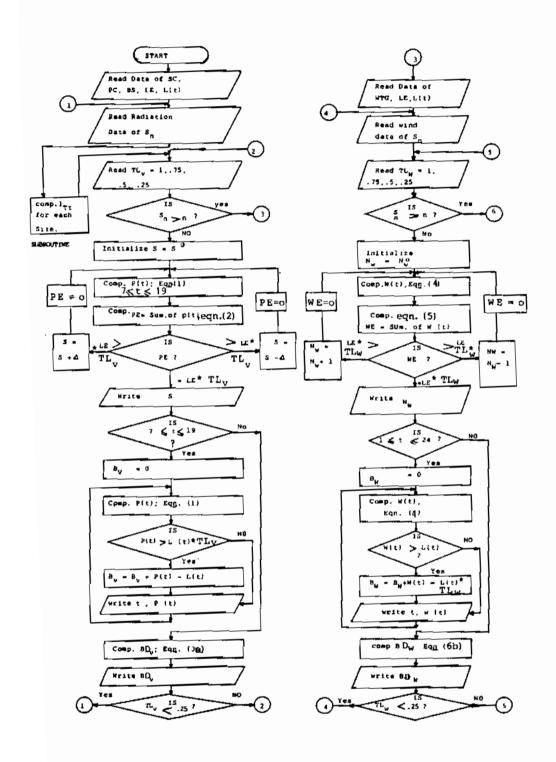
year hour-by-hour wind data so that the storage system charge and discharge operations can be simulated. Moreover, the use of actual wind speed data stems from the fact that neither statistical model (either Weibull or Rayleigh) is perfect and it is difficult to make broad generalization about the ability of both density functions to fit actual data [5]. Thus, actual hour-by-hour insolation and wind speed data of the year months are taken, here, as inputs for the researched sites. The flow of these data throughout the application of the proposal is shown in Fig. 2. In addition, the followings are the significant assumptions that taken into account on applying the suggested approach :

- 1- on solving the design problem of first energy combination: PVPS and BS, a number of solar cells modules is determined and aimed to be installed to charge the battery for meeting the load during the night and cloudy periods. Other modules power the demand throughout the daytime hours of utilizable insolation.
- 2- With the regard of the second combination: WES and BS, the battery will be integrated with the WES when the wind speed being less or greater than the cut-in and cut-out speeds respectively. The necessary number of WTG units is derived according to the seasonal daily energy demand. The battery has been charged during the periods of high wind energy output in excess of the corresponding load levels. It is to be discharged in the intervals of low
- 3- With the concept of operating the PVPS, WES, and BS as the third alternative, their design parameters are deduced according to their simultaneous operation throughout part or all of the daytime period. The BS would be employed, if necessary, to meet the demand during the night, cloudy, and low wind speed periods. Different penetration levels of the formers are investigated economically to decide the best levels.
- 4- The, SCA and WTG output is totally utilized throughout the day hours.
- 2.4.2 Development of PVPS, WES, And BS Sizes
 - (a) Derivation of SCA Size and Capacity of Its Accompained Battery Storage at Different Penetration Levels (TLy)
 - i) Having the input data of SC, PC, BS, LE, L (t), I_{TH} and I_{Tt} , ambient temperature for researched sites and TLy.
 - ii) The final SCA size for certain rated power fulfills the energy balance condition. Starting with an area of S = S°, the corresponding hourly output can be estimated using the following equation:

$$P(t) = 10^{3} \text{ S I}_{Tt} \% (t) \text{ VF } \%_{pc} / \text{ FS} \quad \text{MW} \qquad \dots (1)$$

$$\text{Here} \quad \%_{c} (t) = \%_{cr} [1 - \text{F} (T_{c} - T_{cr})]$$

$$T_{c} = T_{A} + q T_{t} \qquad ^{\circ}C$$


The monthly average daily photovoltaic energy output (PE) is, then, found by:

$$PE = \sum_{t=t_1}^{t_2} P(t)$$
 ...(2)

It is compared with the seasonal daily energy demand (LE) penetrated with TL_V resulting in the following probabilities:

- 1. PE > LE * TL_v , then , the prechosen size, 5°, should be decreased with an area (\triangle)
- and repeating the foregoing process.

 2. PE < LE * TL, S° will be modified by a (A) to have higher size and equs(1) % (2) are applied again.
- 3. If PE = LE * TL, then the chosen SCA area satisfies the energy balance condition and is taken .

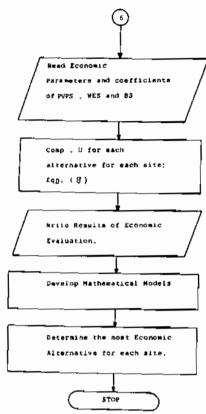


Fig. 2 Flowchart of The Proposed Approach.

iii) The battery integrated, here, with the PVPS has a capacity BS, comprising of two parts. The first, BD, is to be charged by the surplus energy during the high insolation period and being discharged to power the load demand throughout the low insolation one. The other part, BN, is needed to meet the night and critical load. The capacity BD is found as:

$$BD_{v} = B_{v} / \eta_{B} \qquad \dots (3-a)$$

where

B, is the surplus energy available during high insolation periods estimated by :

$$B_v = \sum_{t=t_1}^{t_2} (P(t) - L(t) * TL_v)$$

This summation is accomplished only for the condition of P (t) \geq L (t) * TL,, and P (t) is derived by applying eqn (1) for the final and correct SCA size

Also,
$$BN_v = Night and critical loads * $TL_v / 7B$. . . (3-c)$$

On the other hand, the total capacity BS, can considerably be reduced by applying propose, here, as the PV - aided load management strategy. The load demand profile is, thus, modified to be the same as the PVPS output. That is, the majority of the night loads, except the lighting and critical ones, are shifted and powered throughout the daytime.

- (b) Deduction of the Number of WTG Units and capacity of its Accompanied Battery with Various Penetration Levels (TL_u)
 - i) Having the data of the candidate WTG, wind speed along the year (hourly) and air pressure of the investigated sites and penetration level of WTG output.
 - ii) On the basis of energy balance condition, the number of WTG units is derived.

 An initial number of WTG, N°, is, thus assumed for which the hourly electrical output, W (t), is estimated as follows [6]:

$$W(t) = 10^6 * 0.5 \text{ A N}_w V_t^3 \text{ CP } 7_m 7_g \text{ MW}$$
 ... (4)
 $\text{Ior } V_{ci} < V_t < V_{co}$

where, $f = 1.2929 (P_r - VP) 273/760 T$

So, the monthly average daily WTG energy output is calculated from :

$$WE = \underbrace{\frac{t_2}{t = t_1}}_{t = t_1} W(t) \qquad \dots (5)$$

Satisfying the condition of $V_{Ci} < V_t < V_{CO}$ The WTG output given by this eqn will be compared with the seasonal daily demand penetrated by TL w as follows:

- If WE > (LE* TL_w), then the initial number N_w should be decreased with a decremental value, say, one unit as explained by the flowchart.
 If WE < (LE* TL_w), N_w will be increased with, say, one unit. These steps are repeated till the following condition is achieved:

WE = (LE* TL_{w}) + permissible tolerance.

Then, the corresponding number WTG units fulfills the energy balance constraint and is taken as the final decision.

iii) The capacity (BS_W) of the battery accompanied, here, with the WTG is found using the same steps previously followed in estimating that accompanied with PVPS. So,

$$BS_{\mathbf{W}} = BD_{\mathbf{W}} + B_{\mathbf{C}\mathbf{W}} \qquad \qquad . . . (6-a)$$

where
$$BD_W = B_W / \gamma_B$$
 ... (6-b)

It is the battery storage capacity required to accommodate the surplus energy of WES.

 B_{W} is the surplus energy attainable during the rated speed period in the range of $Y_{a}^{W} \neq Y_{a} \neq Y_{a} \neq Y_{a}$ given by : ci < V t < V co given by :

$$B_{W} = \sum_{t=1}^{t=24} [W(t) - L(t) * TL_{W}] \qquad ...(6-c)$$

[When W (t)>L (t) * TL_{W}]

W (t) is obtained on installing N $_{f W}$ units and TL $_{f W}$ as a penetration level.

On the other hand, B_{CW} is calculated from :

$$B_{CW} = (critical loads) * TL_{W} / \gamma_{B}$$
 ... (6-d)

It is concluded that eqns (1), (2) \sim (3) are used with TL $_{\rm v}$ = 1.0 p. u. to find the component's sizes of PYPS/BS combination. However, to deduce components's sizes of WES/BS combination, eqns (4), (5) and (6) with $TL_{W} = 1.0$ p.u. have been applied.

Now, eqns (1) - (6) should be used with an arbitrary TL, and its complement TL, for sizing the heart units PVPS/WES/BS combination. The corresponding total BS capacity will have the summation of :

$$BS = BS_v + BS_w \qquad \qquad \dots (7)$$

at the imposed TL_{ψ} with and without PV-aided load management.

c) Economic Evaluation.

The energy cost figure, U, is chosen, here, as an index to differentiate between the imposed alternatives. It has been computed taking the effect of the meteorological conditions of the studied sites, Penetration levels, and with and without the application of the suggested load management strategy. Present and anticipated prices of SC modules, WTG units and BS are considered using the following expression [7]:

U = [(Total capital investment of the energy combination) (L.F)] + [Annual O & M costs] / [(Annual energy produced) (availability Factor)]

L.F = $r(i + r)^{K} / (1 + r)^{K} - 1 = charge rate$

r = Annual interest rate in P.U.

K = Amortization period in Year.

The total capital investment incorporates the costs of the wiring and control system, land area and interface devices in addition to the total hardware costs of the energy cembination

3 RESULTS

3-1 Input and Output Particulars.

The proposed approach has been programmed to be run on an IBM personal computer (640KB). The systems's sizes with their corresponding economic results are printed out and summarized in Table (1) for the following input particulars:

- I- Site: Two extremely located egyptian sites are selected. They are Mersa-Matruh (31.33°N) and East-oweinat (22.9° N).
- 2- Solar Radiation: The horizontal global levels were recorded continuously throughout the days of recent five years. They had been published in Ref. [8]. They are averaged and plotted in Fig. 3 (a & b) for representative months of summer and winter seasons and modified by the aid of methods mentioned in Refs. [9 & 10] resulting in the average daily radiation profile at the monthly best tilt angle for our sites.

3- Wind speed: Again, the hourly speeds had been collected and published in Ref. [9] for both sites covering all year's days. The average values are drawn for two representative months in Fig. 3 (a & b).

4- Load Oemand: Two daily industrial load profiles are constituted representing its hourly variation for the summer and winter seasons. Their specifications are mentioned in the Appendix.

5- Energy Combinations Researched: Their technical and economical particulars are stated

indetail in the Appendix.

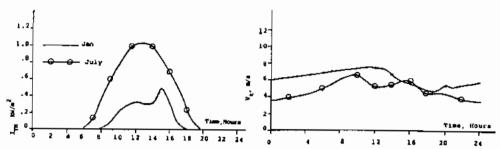
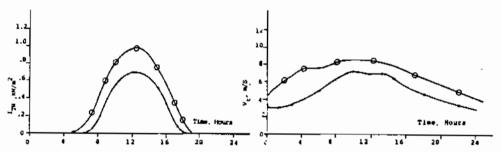



Fig . 3.-a Horizontal Soler Radiation, I_{TH.} and Mind Speed Profiles recorded for Herae - Matruh Site,

Pig , 3 -b Morizontal Solar Radistion, $1_{\rm TH}$; and Mind Speed Profiles recorded for fast - Owienet Site.

Table (1) Sizes of Energy combinations on Applying Energy Balance Technique for Distinctive

				tou rea	••••									
Energy	I				N	- 4819	Matruh					East-c	vetna	ŧ
Combin- ation	TL,	TŁ,	┖	5,	No.of	Ho.of	RS.	kWh	\neg	-	No.of	1	BS,	kWh
			ч,	n.2	Hodu-	Parall- ⊕l Strings	LA	CM CM	*	s.	Modul-	jtej para para	After LH	Before LH
	P.U	P,U)	ļ					
PVPS/ ES	1.00	0.0	0.0	35620	23970	1410	5352	11390	0.0	31.4/9	21111	1243	290U	1140
PVPS/ WES/BS	0.75	0.25	1	21.927	14755	868	1310	10355	3	2064-1	1 3906	818	390	10180
	0.50	0,50	В	1 4046	9452	556	160	d500	5	1 2454	8.36T	493	174	6833
	0.26	0.75	12	6088	4097	241	0.0	4032	7	4472 -	3009	177	0.0	5400
WES/ RE	0.00	1,00	16	0.0	0.0	0.0	0.0	6100	9	0,0	0.0	0,0	B.0	7800
	L	1		L		L		I						

Each string consists of 17 modules and gives 4.98 Amp. at 416.5 VDC.395 VAC) (MPP), Each MTC Unit gives 200kW at Raced wind Speed. e160 VAC . 60 Hz .

3.2 Quantitative Analysis and Discussion:

a) Geographical sitting and seasonal Effects.

In this Section, the demand and generation output profiles are demonstrated and analyzed with multiple conditions.

Fig. 4 shows, for the aforementioned egyptian locations, these patterns for equal penetration levels of intermittent systems i.e. $TL_{\nu} = TL_{\nu} = 0.50$ and summer and winter seasons. The shown sizes are found by satisfying the energy balance constraint.

With Mersa - Matruh site, Fig. 4. a displays an output of total peak of 2.0 MW while 1.81 MW is its value on installing the same energy combination in East - Oweinat (Fig. 4. c.). The fluctuation in the output of WTG sited in Mersa - Matruh impacts pronouncly the resultant as displayed in Fig. 4.b. However, for East - oweinat, the total output profile behaves nearly like the solar radiation variation (Fig. 4-c & d). The followings are the main features of these profiles:

Season	Site It e m	Mersa - Matruh	East-Oweinat
Summer	Total Peak, MW	2	1.81
	Fluctuation in Total output, MW Lowest Output	(2 - 1.65 - 1.81)	No
	Level, MW.	0.18	0.34
	Total Peak, MW	1.41	
Winter	Fluctuation in Total output, MW Lowest Output	(1.41 - 1.23 - 1.48)	No
	Level, MW	0.35	0.17

Outof these details, it is clear that no output fluctuations will be experienced on installing both systems at East-oweinat. The seasonal characteristics influence the total peak and the lowest output level especially with Mersa - Matruh in the Northwest of EGYPT.

b) Impact of Composite Peuetration Levels on Output Behavior.

Shown in Fig. 5. are the output patterns for two levels of penetration and summer season. The problem has been solved for the investigated sites. With the energy combinations located in Mersa - Matruh, Fig. 5-a depicts the case of $TL < TL_w$ which results in appreciable fluctuations in the total output. This observation can be ascribed by the considerable effect of fluctuated WTG output that results due to its high penetration.

On the contrary, Fig. 5-b reveals the total output having a quasi-smooth variation similar in shape to the positive half of a sinusoidal waveform. It occurs when $TL_{\downarrow} > TL_{\downarrow}$ which has led to very low total output levels in the night and earlier morning regions. This result is expected, here, since we have only the WTG output during these periods which again have low penetration level. Therefore, the need is substantial for suggesting and applying a load management strategy to modify the load demand in the foregoing periods.

Fig. 5-c and Fig. 5-d exhibit the output behavior but with the energy systems being sited in East-Oweinat. As a general of notice, the total output has a profile of smoothest shape since the fluctuations of the WTG output are not appreciable for this location. The case is better with $TL_{\infty} < TL_{\infty}$ as shown in Fig. 5-d. So, the principal characteristics of these curves can be tabulated in Table (2-a) which involves also those of Fig. 6.

Moreover, the individual and total output of both systems are instituted under the effect of winter circumstances taking the same penetration levels. Table (2-b) summarizes the main features of their daily behavior.

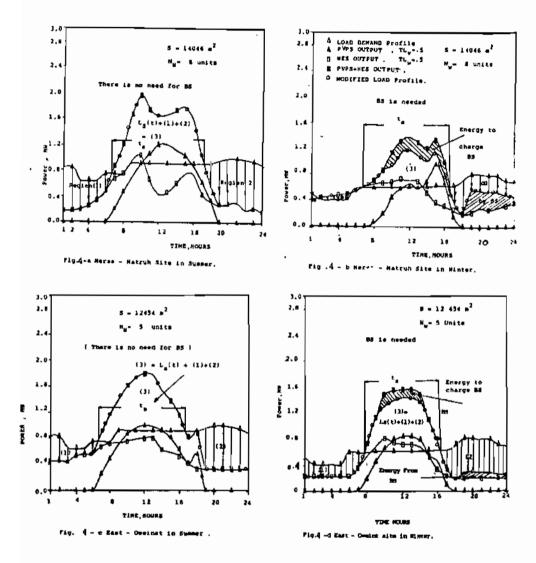


Fig. 4 Load Demand , PVPS Output, WES Output, PVPS + WES Output and Modified Load Profiles, Mersa - Matruh and East - Oweinat sites. $TL_V = 0.5$, $TL_W = 0.5$ (PVPS / WES/ BS Energy Combination)

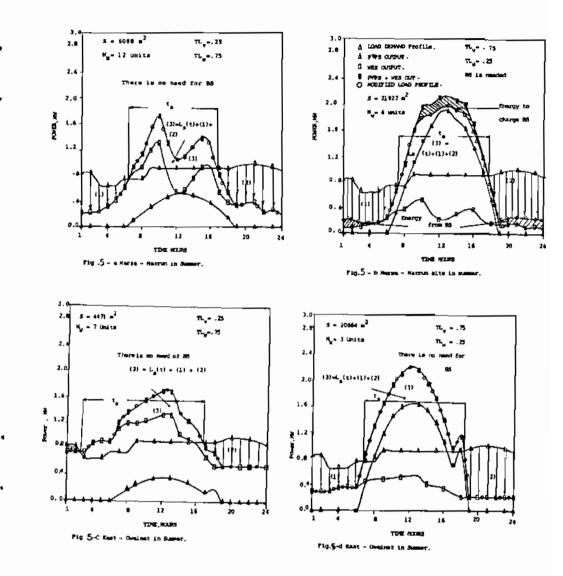


Fig. 5 Load Demand, PVPS Output, WES Output, PVPS+WES Output and Modified Load Profiles, Mersa - Matruh and East - Owelnat Sites(PVPS/WES/BS Energy combination)

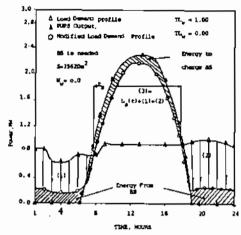


Fig. 5 -a PVPS/ 86 Energy commination output, Merse -Hebruh, Summer.

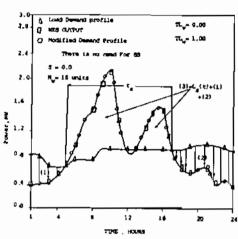
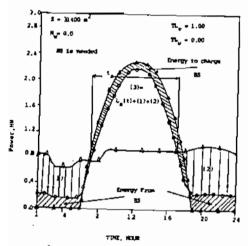



Fig. 6-b MCS /hi Erwryy Compination Output, Herea - Matruit , Summer,

FigS-c. MFS/BS Energy combination output, East -Owningt, Samer,

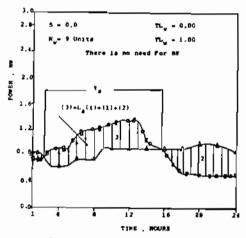


Fig 6-d NES / BS Energy Combination output, East - Desinat, Summer.

Table (2-a) Fluctuations in Total Output in Summer Season (Fig.) 6 4) .

	TL _V -	0	0.25	0.75	1.0
Item	TL _H -	1.0	0.75	0.25	0.0
	Mersa				
Total Peak,	Macruh East-	2.15	1.75	2.18	1.1
HH -	Owelnat	1.38	1.74	2.18	2.1
	Hersa-				-
Fluctuations	Matun	(2.15-0.8-1.58)	(1.75-1.065- 1.45)	NO	NO
in Total	East-				
Output, Mw.	Oweinat	NO NO	NO	(2+18-0.95- 1.17)	NO
Lowest Level of	Mersa- Matrub	0.15	0.21	0.10	0.1
Total output,	Cast- Owelnat	0.55	0.53	0.20	0.1

Table (2-b) Fluctuations in Total output in Winter Season.

Total Peak,	Mersa- Matruh East- Oweinat	1.10 L:50	1.19	1.85	1.97
Fluctuat~	Hersa- Macruh	(1.10-0.26-0.42 -0.38-0.491	ю	(1.0~1.48-1.62)	(1.97-1.17-1.32)
Total Output,	East- Oweinat	(1.5-1.24-1.25)	ND	но	NO
Lowest level of	Hersa- Hatruh	0.50	0.25	0.30	0.28
Total Output,	East_ Owelnat	0.35	0.23	0.10	0.18

Out of the shown results the following conclusions are drawn:

- I- Installation of an energy combination either in the northwest or Southwest of EGYPT with TL_V>TL_w augments the total peak to a higher value compared with the case of TL_v< TL_w. This is correct throughout the year months.

 2- No fluctuations in total output, except for too short periods, have been observed with
- 2- No' fluctuations in total output, except for too short periods, have been observed with an energy combination being erected at East-oweinat. This is attractive and facilitates the task of maximum power tracking and conditioning.
 - c) Application of a Proposed Load Management Strategy (LM).

Throughout the optimization process, it is intended, by the aid of constituting the daily total output profiles of the energy combination, (T.O.), to eliminate or reduce the BS to have a minimum capacity so that the following constraints should be satisfied:

- I- Energy balance.
- 2- It is used only to cover totally or partially the lighting and critical loads because of the insufficiency of the T.O. mainly in the night and earlier morning (inclined dashed regions).

This goal is achieved, here, by reshaping the load demand profile to be similar to that of the total output of the energy combinations studied.

The intersection of the daily profiles of T.O. and load demand yields threeregions. The regions (1) & (2) are distinguished by T.O. $\langle L \rangle$ (t). If the second constraint (2) is to be met, then the off-lighting and critical loads in (1) & (2) (vertical dashed lines) are shifted and will be power in the τ -interval (Region (3)) where T.O. \rangle L (t). Thus the output of a combination of PVPS and WES determines in a precise manner the appropriate level of load management. So, one can call it as a PV and WTG-aided load management. This, in consequence, eliminates complex examinations and computations to achieve this purpose. Table (3) tabulates the main characteristics of the modified load demand curves after managing the loads under the impact of effective conditions. The economic evaluation of the problem for distinctive levels of penetration is explained in Table (4). It clearly shows the hardware price effects before and after applying the previous strategy on the energy cost figure (U).

Table (5) tabulates the decremental change in U ($\triangle U$) on managing the load. The result of having a high P.U. value of $\triangle U$ means that the LM has a sensible influence on U or in other word that the PVPS or WES do't play a significant role in this management at the considered penetration and prices. The reverse is correct that is the results of having a minimum $\triangle U$ ($\triangle U$ min) means that these systems have maximum effect in executing such strategy and there is no substantial need for additional management.

On conclusion, the basic and well-known definition of load management will be altered in view of these results. The common definition of LM is that it is demand-side load shape modification strategy in which the main objective is the shift of energy consumption patterns to reduce contribution system peak. Now, it certainly differs since the primary objective-with the intermittent power producers is the shift of energy consumption profiles to increase contribution to system peak. In other words, the load demand pattern should be modified to coincide with that of T.O.

For the researched egyptian sites, Table (6) summarizes the most economic penetration levels of the PVPS and WES with their sizes for distinctive SC, PC and RS prices. Fig. 7 depicts the arrangement of windfarm of WTG units to be installed at Mersa-Matruh site, EGYPT with economic penetration levels of $TL_{\rm w}=0.80$ and $TL_{\rm v}=0.20$ with present SCA and PC prices. In addition, the energy cost figure is estimated before and after managing the load. So, the following remarks and results can be drawn:

- 1- With the present prices of SC and PC, it is preferable to introduce the PYPS with a low penetration level and install a large number of WTG units (N_w). Moreover, East-Oweinat site is more economic than Mersa-Matruh.
- 2. With the hopeful prices of SC and PC, the results explain that the PVPS with a BS as a back-up supply is the most economic energy combination required to withstand the load demand.

Table (4) Energy cost Figure . U, For PVP\$ /HES / BS Combinations at Different Pentetration Levels.

0.00

1.00

2.1081

10

. 41 25

1.1089

(F0

. 5644

1.3452

(<u>1</u>2)

.6464

1,471

10

. 4253

1.38 1.46 1.60

10

. 4535 . 4005 . 3911

(n00n)

0.25 0.50

0.75 0.50 0.25 0.00 7. t Penetration Levels. 1, 72 2,1664 1.93 1.97 Sammer Mersa-Matrub ₹,,, 10 10 t ,° . 401 4 . 411 .5056 . 4505 P 5 1.185 1.191 1.54 1.9744 ₹," (tood) 2.1 [0000] 1 2 15 _v~ 15 .5201 .5254 . 11 70 .4074 P. G 1.80 1, 70 2.19 2.1801 ¥ 7 1.2 1.2 12 [mboh] Coopel 17 ซ้ , 4831 , 1971 . 1990 . \$115 P.0 Sast-Overnat

1.805

ב

Bincer Į۳

ő

P. 0 Ę Table (3) Charactristics of the modifiedLoad Patterns produced on Applying LM Strategy For Different

0.75 1.00 7L,

			l	١	l	l	١	ļ								
				Mersa	Mersa - Matruh	truh								East	East - Overnac	Seut
*,	# 1.	After		٤.	_		Bufore	Ē			After UH				Deto	Defore IM
		C -4 3.5/K	o ×	צ	_	3.5		, 20		5.t	•	. 20		3.5	_	
		Cp. 4.50/K	p*.	.01		.50		.01		.50	-	.02		.50		
₽.⊂.	D,C	CB= 87.8%	50	15	8	15	20	15	. 50	15	8	15	80	15	8	ŭ
1.00	.00,00	.2230	.2260	.0136	2910.	.2300	. 2350	.o1 48	.0203	. 1986	2000	9110.	06 TO	.2004	. 2100	PC10"
o. 35	0.25	.1620	.1630	,0282	.0290	.1650	00¢ T'	1080	.0352	0867"	CBC I'	.0208	.0210	1400	.1.450	.0230
8.50	3.0	.130	06817	.045\$.0460	.1340	08C 1	.0472	.051.4	.1030	ECD1.	t620°	.0292	.1050	.1060	.0320
0.25	.s %	1000	.1010	.0628	. 06 30	1020	.1040	.0640	.0663	.055)	.0566	.0318	.0318	.0566	.0600	K E0"
.8	.8	11.11	.1370	11.11	.1370	.1153	.1441	.1153	.1441	.0000	.09402	0000	.0940	.0720	1013	.0720

. p.z

,

Applying a Proposed Load Management Strategy .

Ctot.

.0337 .0272 .0189

.0362

E. 44 H.H.EL-Tamaly and M.H.EL-Maghraby .

Table (5) Decremental Change in U. ΔU . On Appllying a load Henagement Strategy.


			erma - Ha	truh		Zast - I	Ovelnet I		
76,	π.,	С _в -0 3.5/ к С _{ра-} 0.5/к	P	.2	-	1.5		.2	
P.U.	P.U.	С _В -\$ 15/ кип	50	15	50	15	50	15	50
1.00	0.00	3.14	4,00	8.52	25.30	4.56	5.00	15.57	45, 3
0.75	0.25	1.05	4.30	6.74	21.40	1.45	5.10	10,58	29.5
0.50	0,50	1.52	3.60	3,74	11.74	1.94	4.55	6.53	15,41
1.25	0.75	2,00	3.00	2,00	5.24	2.40	5,00	4.09	13.84
0.00	1.00	1.95	5.20	1.95	5.28	2,85	7.8G	2.66	7,80

** Δ U = 100 ($U_{\rm B}$ - $U_{\rm A}$) / $U_{\rm A}$ U = 100 ($U_{\rm B}$ - $U_{\rm A}$) / $U_{\rm A}$: Before Managing the load.

Table (6) Most Economic ${\rm TL_{VO}}$ 6 ${\rm TL_{WO}}$ For PVPS /WES/85 Energy combinations.

		c - 31.5	/¥ø, °ø≤	8.5/4						C, - 4.	2/ Mp. C	- 6.01				
Personal Property of the Personal Property of	- 404	** #1 564	-			Last-	01-11-1-1			Harra-M.	tryk			Laur-o	*****	
	After		9=E-		•	Ctor Lat	***	•	453	•	- (c			Pter Ul	terfec (st	
_	C=+815/	540	13	10	11	Sà	פג	10	21	10	u	50	13	18	13	30
R	.39		.29	.10	15	'11	.19	70	I.O	1.0	1.0	1.0	1.0	1.0	1.0	1.4
R _{wg} pu.	_		. ao	.80	.85	-		.=	4.0	4. 0	0.0	6.8	9.4	0.0	0.0	0.0
2.97	1258	125	1295	5295	1780	Ta56	ism	147	25.70	79430	2420	2434	1400	10	100	31.4 0 0
As, of Foduled	RM	7.00	3930	ж	1265	1294	1281	Jorn,	23910	23970	279 10	23970	211	AIR	87.8	иги
Mo. Of Parailol Parings	781	-	209	200	7	76		ın	144	160	140	140	124	180	124)	1243
٠,	11	. 13	, 11	1.3		•	•	,	0.0	0.0	0.0	2.4	1.4	1.0	1.0	1.6
Eg Capacity,	0.0	₽.0	c) ps	026	٠	0,4	-	5130	1845	1163	17.300	:1390	Вя	7960	22.000	11406
0, 1/ wh	.uria	.0900	.0144	,1007	.6438	.0304	.24%	039	.4136	.0161	.914	,5391	.0116	01.30	.8.4	.014+

updying Proposed Load Hanagement Strongy.

- 3- The load management affects principally the BS capacity. It is omitted with the present prices while with the anticipated ones, the capacity has been reduced by a percentage up to about 50%. The last result has been obtained on using PVPS only as a power producer.
- 4- The results demonstrate to what extent the use of renewable energy combination is economically attractive in the light of the meteorological egyptian conditions. Lowest cost figures are obtained on applying the suggested load management strategy and anticipated prices. They are \$ 0.0136 and \$ 0.0116 for Mersa-Matruh and East-Oweinat respectively.

4 CONCLUSION

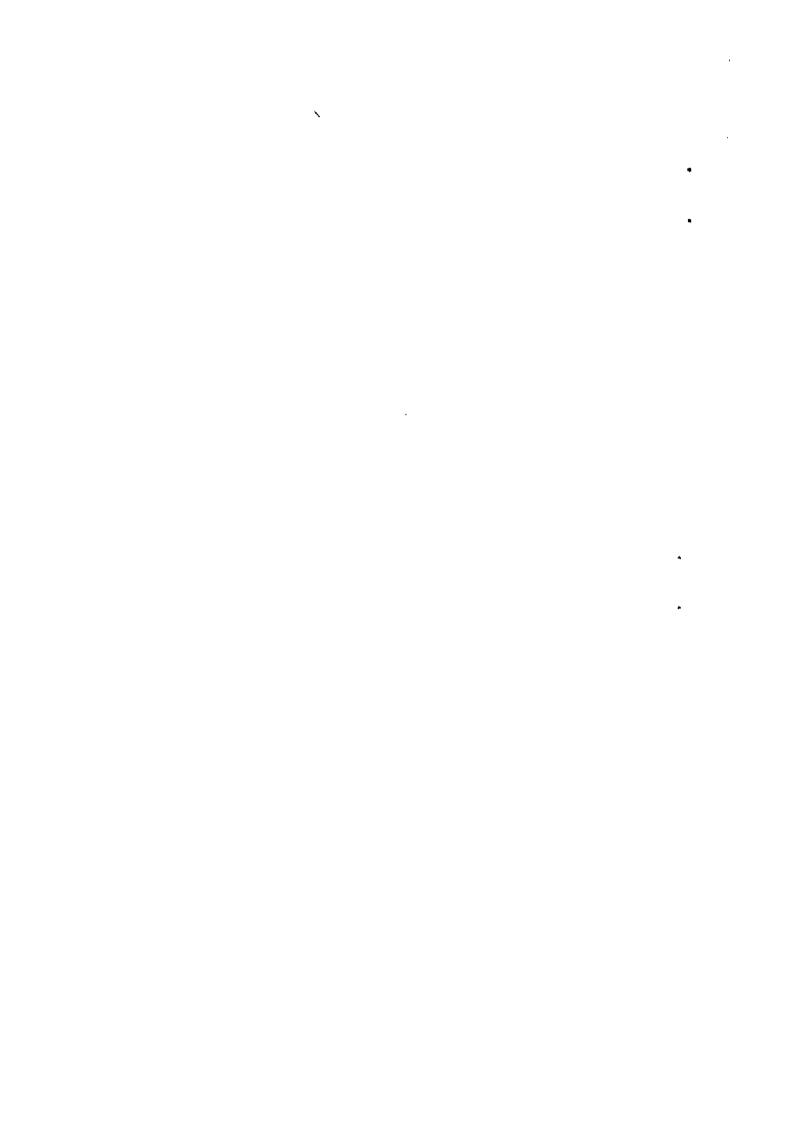
The followings are the salient conclusions that can be drawn from this paper:

- I- Integrating and installing PVPS and WES in sites like the egyptian ones is very useful and indispensable for meeting the load requirements.
- 2- It is viable to use actual hour-by-hour data since they accommodate accurately all seasonal variations of the locations.
- 3- The most economic energy combination very much depends on :
- a) The essential assumptions
- b) Type of data and approach of sizing the SCA, WTG and BS subsystems.
- c) Possibility of applying a LM strategy.
- d) Role of BS and its capacity with its operation time.
- e) Prices of the hardware components in the present and future times.
- 4) The demand and generation output profiles are deduced and analyzed for distinctive penetration levels of both PVPS & WES hypothetically installed at Mersa-Matruh and East-Oweinat in EGYPT.
- 5) With East-Oweinat and TL < TL , the total output has a profile of smoothest shape since the fluctuations in WTG output are not appreciable for this location. The result is better with TL < TL . This is practically attractive and thus facilitates the task of maximum power tracking and conditioning.
- 6- The battery storage is eliminated or reduced having a minimum capacity by applying what we call and propose here as PVPS & WES-aided load management. Thus, the daily load demand profile has been reshaped so that it becomes similar to that of the total output of the energy combination studied.
- 7- Table (6) demonstrates the most economic penetration levels of the PVPS and WES with their sizes and various hardware components costs. The impact of applying the LM strategy is explained and quantitatively analyzed

With the present prices of SCA and PC, it is the most economic to introduce a PVPS with a low Penetration level and install a large number of WTG units. East-Oweinat is more economic than Mersa-Matrach. On contrary, with the hopeful SCA & PC prices, PVPS + BS as a back up supply is the most economic combination.

REFERENCES

- [1] R. Ramakumar, P. Sudhakara and K. Ashenayi, "A Linear Programming Approach to the Design of Integrated Renewable Energy Systems for Developing Countries," IEEE Vol. EC-1, No. 4, December 1986, pp. 18-24.
- [2] Benjamin Y.H. Liu and Richard C. Jordan, "Daily Insolation on Surfaces Tilted Toward the Equator," ASHRAE Journal, October, 1961, pp. 53-59.
- [3] S.A. KLEIN, "Calculation of Monthly Average Insolution on Tilted surfaces," Solar Energy, Vol. 19, pp. 325-329, 1977.
- [4] G.E. Jorgensen, M Lotker, R.C. Meier and D. Brurley, "Design Economic and System Considerations of Large Wind-Driven Generators", IEEE, Vol. PAS - 95, No. 3, May/June 1976, pp. 870-878.
- [5] Gary L. Johnson, "Wind Energy Systems" Book, Prentice-Hall, INC, Englewood Cliffs, N.J. 07632, USA, 1985.


- [6] Gary L. Johnson, "Economic Design of Wind Electric System" IEEE, Vol. PAS-97, No. 2, March/April 1978, pp. 554-562.
- [7] R. Ramakumar, "Renewable Energy Sources and Developing Countries," Vol. PAS 102, No. 2, February 1983, pp. 502-510.
- [8] "1986's Hourly Global Insolation Report of Egyptian Sites", Meteorological Station of Arab Republic of EGYPT, 1987.
- [9] "The Available Wind Data in EGYPT", Report, Prepared by A. Mobark under the Contract of "Development of Wind-solar Power Generation System for Rural Areas in EGYPT", With Ministry of Electricity and Energy of EGYPT, 1982.
 [10] "Design of a Photovoltaic Central Power Station", Contract Report, SAND 82-7149
- Unlimeted Release UG- 63-a, Marietta corporation Denver, Co., February, 1984.
- [11] P.L. Pulfrey, "Photovoltaic Power Generation", Book, Van Nostrand Reinhold Company, 1978 .
- [12] Adam Pintz, R. Kasuba, and J. Spring, "Conceptual Design of a Fixed-Pitch Wind Turbine Generator System Rated at 400 Kilowatts", Report, DOE/NASA/0006-1, NASA CR-174877, June, 1984.

APPENDIX

a) Load Demand Pattern

Particulars	Summer	Winter
Daily Energy, (1) LE, MWh	20.87	15.02
Peak, L _p , MW	1.00	0.82
Peak Load Starting Instant, to	20.00	19.00
Peak Load Starting Instant, t _p Load Factor, (2) P.U.	0.87	0.76

- (1) Constant either before or after Managing the load.
- (2) Before Managing the load.
- b) SCA [10]: cells: Dendritic Web, silicon, Noct: 44°C, Module size: Extruded Al Irame, EVA pottant, 0.32 cm Full-Tempered glass, 0.13 mm craneglass, mylar backing. Module Aperture = 1.486 m³ 7_C = 0.142, 7_{module} = .122, Voc = 24.5 V_{dc}, I_{sc} = 9.52A, V_{mp} = 19.91 V_{dc}, I_{mp} = 8.98. A, P_{mp} = 178.8 W, at 1000 W/m², AM1.5, 29°C c) PC: 7_{pc} = 0.95 (Involving Inverter and switch).
- d) 85 [11]: $7_B = 0.80$, sodium-sulfur and lead-acid.
- e) WTG [12]: Turbine: A horizontal axis, propeller type, constant speed, Rotor Diameter = 40.35 m, Rotor Ground clearance = 15.2 m, Rotor speed = 36.9 RPM, V_r = 7.7, V_{ci} = 3.8 and $V_{co} = 16.4$ m/s at 17.7 m. Mechanical Transmission: $\eta_{m} = 0.96$, synchronous type Electrical Generator, $7_g = 0.93$ at UPE, Rated power = 200 kW, f = 60 HZ, Terminal voltage = 4160 Vac.
- f) Economical Particulars: $C_s = $3.5/W_p$ (present price) and 0.2 \$/Wp (anticipated price)*, $C_{pc} = 0.5$ \$/W and 0.01 \$/W*, $C_B = $15/kWh$, Sodium-sulfur and \$50/kWh. Lead-Acid Types, WTG Price = \$ 1000/kW, [12], Control Devic Price = \$ 800/WTG unit, Microprocessor Price = \$ 11000, Yearly O & M = 0.15 of Annual Levelizing Cost for WES/BS Combination and = 0.05 for PVPS/BS Combination. Land area Price = 0.5 \$/m². * Within Future 10 Years. [9] .

OFTIMAL LOCATION AND SIZE OF FIXED CAPACITORS ON SINGLE RADIAL FEEDER

الموضع والتقليم الأمثل للمكثفات الثابتة على موزع شعاعي مفللرد

Kamal M. Shebl

M.E. Elsaid

Faculty of Engineering Mansoura University Egypt

الخلاصة ـ بغدم هذا البحث طربقة تكرازية جديدة لنحديد الموضع والقيمة المثلى لمكتفات القــــوى الشابنة عند تركيبها على المغديات الاشعاعية في نظم النوزيع في دالة النعميل الاستابيكي على نقيط محددة على طول الموزع ، بنعرض البحث للموديل الرساص لتعتبل كل من الوفر في النكلفة الناتج عين خفض الطاقة والقدرة المغفودة في الموزع وذلك بأخد بعض المواصل في الاعتبار مثل معدل النعو في مغاصل الحمل ، ومعدل الزيادة في نكلفة وحدة الطاقة ، كما بقدم البحيت المتناطأ للعلاقة بين كل من الوفر في بكلفة الفدرة المنوفرة وتكلفة (لمكتفات والقيد على انخفياش البعد عند الأحمال والقيد على انخفياش البعد عند الأحمال والقيد على الارتفاع في البعد عند انخفاض الأحمال مع نواجد المكتفات وبين التار البعدي المنافق في الاحمال وتكلفة وحدة المكتفات المنافقة على الحل الأمثل ويعتار هيدات المنافقة على الحل الأمثل ، وبعتار هيدا الطربقة عن معظم الطرق المستخدمة في هذا المحال بساطتها وبعولة البرنامج المستخدم وبعوليا التطبيق وأنها تعنري من الأمل (متحدام مكثفات قياسة وذلك عكن الطرق الأخرى والتي تعطي ندائيا غير قداسة للمكتفات تم بيم تعريبها بعد ذلك الى القيام العباسية وكذلك المكتفات تم بيم تعريبها بعد ذلك الى القيام العباسية وكذلك المكتفات تم بيم تعريبها عد ذلك الى القيام العباسية وكذلك المكتفات تم يا تعريبها عدد ذلك الى القيام العباسية وذلك المكتفات تم يام تعريبها عدد ذلك الى القيام العباسية وكذلك المكتفات تم يام تعريبها عدد ذلك الى القيام العباسية وكذلك المكتفات تم يام تعريبها عدد ذلك الى القيام العباسية وكذلك المكتفات عدد الاقدال المستفيفة في نواجد المكتفات م

Abstract: This paper presents an optimal method for locating and sizing of fixed shunt capacitor banks in case of static load on single radial distribution feeder. Mathematical models to represent cost saving due to power and energy loss reduction are presented considering growth in load, growth in load factor and increase in cost of energy. The cost saving due to release in system capacity, capacitor cost, voltage drop and voltage rise constraints as a function of capacitive current flows in feeder segments have been formulated. The cost functions have been performed for optimizing the choice of fixed shunt capacitors. This proposed method has a special advantage that the optimal location of capacitors is limited by the lean period voltage rise constraint and thus avoiding over-voltage problems during the off-peak hours. The effect of unit-capacitor value on optimal solution is introduced.

1. INTRODUCTION

The continuous increase in consumption of electric energy tends to increase power and energy losses in primary distribution feeders which reduce the available capacity of feeder and increase voltage drop along the feeder which results an increase in electric energy cost for the consumer. There are several methods to reduce these losses and improving the voltage profile at the consumer. One of the simplest methods is the use of shunt capacitors on the primary distribution feeders to reduce the feeder currents, reduce power and energy losses, improve voltage profile along the feeder and cause an appreciable release in feeder capacity that can be used to feed extended additional loads on the feeder. The principle problem in installing power capacitors on primary distribution feeders is determining the optimal location and size of these capacitors on the feeder to gain maximum cost savings and, at the same time, the system constraint are achieved.